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Abstract--Sub-vocal electromyogram/electro palatogram
(EMG/EPG) signal classification is demonstrated as a method
for silent speech recognition. Recorded electrode signals from
the larynx and sublingual areas below the jaw are noise
filtered and transformed into features using complex dual
quad tree wavelet transforms. Feature sets for six sub-vocally
pronounced words are trained using a trust region scaled
conjugate gradient neural network. Real time signals for
previously unseen patterns are classified into categories
suitable for primitive control of graphic objects. Feature
construction, recognition accuracy and an approach for
extension of the technique to a variety of real world
application areas are presented.

Index Terrns--EMG, Sub Acoustic Speech, Wavelet, Neural
Network

I. INTRODUCTION

C OMMUNICATION between humans or humans and
their machines occurs in many ways. Traditionally

visual and verbal information exchange tends to dominate.

As a result, efforts at automating human or human to

machine communication such as commercial speech

recognition, have emphasized the public audible aspects.

However, a totally auditory communication strategy places a
number of constraints on the communication channels. These

constraints include sensitivity to ambient noise, a

requirement for proper formation and ennunciation of words,

and a shared language. The physical limitations of sound

production also become problematic in environments such as
HAZMAT, EVA space tasks, or underwater operations.

Furthermore, auditory expression may be undesirable for

private communication needed in many daily situations such

as discrete telephone calls, offline comments during

teleconferencing, military operations, or human to machine

commands and queries. Communication alternatives that are

both private and non-dependant on production of audible

signals are valuable.

One proposed method is the direct readout of brain

signals. This approach bypasses speech production altogether.

Wolpaw et al. [9] recently published a review of the state of

Manuscript received January.25, 2003. This work was supported by
NASA Ames Research Center under the C1CT/ITSRprogram. _Dr. Chuck.
Jorgensen. is with the Computational Sciences Division, NASA Ames
Research Center, Moffett Field CA 94035. (e-mail:
ciorgensen@mail.arc.nasa.o_ov). 2Diana. Lee. is with SAIC Corporation
NASA Ames Research Center (e-mail: ddlee@mail.arc.nasa.gov).3Shane.
Agabon is with QSS Corporation NASA Ames Research Center e-mail:
sagabon@mail, arc.nasa.gov

the art in electroencephalograph (EEG) understanding. We too

are pursuing EEG approaches in our lab [12]. However there
are a number of practical difficulties for nearer term

application of such EEG approaches due largely to their use
of aggregated surface measured brain potentials, their inherent

non-linear complexity, and their idiosyncratic nature. The

alternative, invasive EEG measurement, is not considered by

us as practical for widespread use.

Consequently we are exploring surface measurement

of only muscle signals (i.e. electromyographic or EMG) to

disambiguate speech signals produced with minimal or no

acoustic output. In the present paper we demonstrate one

approach to the recognition of discrete task control words.

Our approach uses EMG [1] measured on the side of the
throat near the larynx and under the chin to pick up surface

tongue signals (i.e. electropolatogram or EPG). The approach

capitalizes on the fact that vocal speech muscle control

signals must be highly repeatable to be understood by others.
The central idea is to intercept these signals prior to actual

sound generation and use them directly. These are then fed

into a neural network pattern classifier. What is analyzed is

silent or sub auditory speech like when a person silently

reads or talks to themselves. [2][3]. In our approach, the

tongue and throat muscles still respond slightly as though a
word was to be made audible albeit very faintly and with

little if any external movement cues presented. Given

sufficiently precise sensing, optimal feature selection, and

good signal processing techniques, it is possible to use these

weak signals to perform usable tasks without vocalization yet

mimic an ideal of thought based approaches.

There are a number of advantages to taking this approach

over invasive alternatives. Among them are minimization of
word variations because there is a shared language and sound

production requirement, potential to connect signal

recognition to highly developed speech recognition engines,
non invasive sensing, reasonable robustness to physiological

variations, and privacy.

The enabling technologies required are sensors adequate to

measure the EMG signals, signal processing algorithms to

transform the signals into usable feature sets, and a trained

neural network or other pattern classifier to learn and classify

signal feature sets in real time. Our initial results have

demonstrated an average of 92% accuracy in discriminating

six untrained sub acoustic words (stop, go, left, right, alpha,

omega) in a simulated real time environment under a wide

variety of electrode placement and recording times. In further

experiments we increased the number of words and the nature
of the sub acoustic features to set the stage for more powerful

applications.



Webeginthispaperby describingourgenericmethod;
nextwedescribeourexperimentsandresults.Weendwith
descriptionsof somerelatedwork,futuredirections,anda
discussionofimplementationissuesyettoberesolved.

II. METHOD

A. Data,4cquiMtion

Three subjects aged 55, 35, and 24 were recorded while

sub auditorially pronouncing six English words: stop, go,

left, right, alpha, and omega. These particular six words
were selected in order to form a control set for a small

graphic model of a Mars Rover. Alpha, and omega were

chosen as general control words to represent faster/slower or

up/down as appropriate for the particular simulated task.

EMG and EPG signal data was collected for each of the

subjects using two pairs of self-ad,besive AG/AG-CI

electrodes. They were located on the left and right anterior

area of the throat approximately .25 cm back from the chin

cleft and 1- 1/2 cm from the right and left side of larynx

(Figure 1). Initial results indicated that as few as one

electrode pair located diagonally between the cleft of the chin

and the larynx would suffice for small sets of discrete word

recognition. Signal grounding required an additional

electrode attached to the right wrist. When acquiring data

using the wet electrodes, each electrode pair was connected to

a commercial Neuroscan signal recorder which recorded the

EMG responses sampled at 2000 Hz. A 60 hertz notch filter
was used to remove ambient interference.

Fig l: Electrode placement and recording

One hundred exemplars of each word were recorded for

each subject over 6 days in morning and afternoon sessions.

In the first experiments, the signals were blocked offiine into

2 second windows, and extraneous signals, e.g. swallows or

coughs, were removed using SCAN 4 Neuroscan software.

Fig. 2 shows two typical EMG blocked signals for the words
left and omega.

For signal feature processing, Matlab scripts were

developed that created a unified signal processing system

from recording through network training. These routines were

used to perform tasks such as transform the raw signals into

feature sets, dynamically threshold them, compensate for
changes in electrode position, adjust signal/noise levels, and

implement neural network algorithms for pattern recognition

and training. EMG/EPG artifacts such as swallowing, muscle

fatigue tremors, or coughs were removed during

preprocessing of the block files.

B. Feature Generation

Blocked signal data for each word was transformed into

usable classifier feature vectors by preprocessing transforms

combined with a coefficient reduction technique. The
transforms tested were:

• A windowed Short Time Fourier Transform (STFT),
• Discrete and continuous Wavelets (DWT & CWT)

with Daubechies 5 and 7 bases

• Moving averages with lagged means, medians, and
modes

• Hartley Transforms

• Hilbert-Huang Transforms

• Linear Predictive Coding (LPC) Coefficients

• and Dual Tree Wavelets (DTWT) using a near_sym_a

5,7 tap filter and a Q-shift 14,14 tap filter [8].

Feature sets were created somewhat differently for each of

the above transforms depending on their unique signal

processing advantages and disadvantages. Each feature set

produced varying degrees of efficacy in pattern

discrimination. Because of space limitations we confine

Fig 2: Sub Acoustic signals for "left" and Omega
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ourselves in this paper to the most effective real time
transforms i.e. windowed FFT vector and Dual Tree Wavelets

coefficient matrices, both of which were post-processed in a

similar way to create their feature vectors. The procedure
used for the two pre transforms was as follows.

Transform coefficient vectors were generated for each word

using one of the latter two transforms on the absolute value

of the raw signal. (This was because the electrodes were bi

polar and hence directional sign information had no

significance). Vectors were post processed using the Matlab



routinesto createa matrixof spectralcoefficients.This
matrix wastessellatedinto a setof submatrices.The
numberandsizeof thesubmatricesdependeduponthe
spectralsignalinformationcomplexi.ty.Tessellationsizes
weredeterminedbasedonaveragesignalenergyin a given
regionof the spectralmatrix.Both equaland unequal
segmentationsize schemeswereconsidered.A single
representativevalue was calculated for each sub matrix to

reduce the number of variables presented to the pattern

recognition algorithm and represent average coefficient

energy.

We chose to use a simple mean as the representative value

because other choices including medians, modes or

maximum sub matrix values showed no improvement. The
result was a vector of coefficient means for each sub acoustic

word instance. The reasoning behind this approach was that

each word could be treated as a noisy visual pattern

recognition problem where the spectral energy matrix became

a 2-D image and features were extracted so as to discriminate

among interesting features in the 'image' patterns. Dual tree
wavelets were selected rather than standard discrete wavelets

to minimize the normal wavelet sensitivity to phase shift.

Similarly, sensitivity to temporal non stationarity in the FFT

was improved using windowing. Continuous wavelets were

not considered practical for real time computational reasons.

The Hartley transform was explored for a potential benefit of

combining both real and imaginary signal components over

real components alone.

C. Feature Training

These feature vectors were used to train the neural network

recognition engine. Word signals were split into three sets, a

training set, validation set, and test set. Generally,

recognition was evaluated using 20 percent of the untrained

word exemplars and signals from only one electrode pair

randomly drawn from the data recording sessions. Five neural

network paradigms were considered for signal classifiers.
Those tested were:

• Scaled Conjugate Gradient nets

• Leavenburg-Marquardt nets,
• Probabilistic Neural Nets,

• Modified Dynamic Cell Structure Nets (DCS)

[13]
• and Linear Classifiers.

After comparison a scaled conjugate gradient net was

chosen for the following reasons. Leavenberg-Marquard

reached the lowest mean square error levels but required too
much system memory for large data sets. This was true even

using reduced memory variations. A low mean squared error

(MSE) did not translate into improved generalization for new

signals due to high sensor noise. Probabilistic neural nets

produced reasonable classifications but required very large

training sample sizes to reach stable probabilities and were

not superior in their ultimate pattern discrimination abili_.

The DCS net had very fast training which made it good for

real time adaptation but tended to be less compact for our

anticipated applications that are memory sensitive. The scaled

conjugate gradient network had fast convergence with

adequate error levels for the signal to noise ratio in the data

and showed comparable performance to the Levenberg-

Marquardt network. This may possibly be because it also

took advantage of a trust region gradient search criteria. In

other EMG tasks we successfully applie d Hidden Markov
Models (14) but so far they were most effective with non

multi modal signal distributions such as with discrete

gestures rather than the present temporally non stationary sub

auditory signal patterns. They also require extensive pre

training to estimate transition probabilities. We anticipate

further evaluations and have not ruled out HMM models, and

may use a HMM/Neural net hybrid if warranted.

D. Human Learning and the Real Time Environment

To quickly explore many experiments on recognition

under different transform variations, we minimized the

amount of on line human learning by operating in a

simulated real-time environment. This environment is part of

a system being developed at Ames for large NASA data

understanding problems. Within the environment, EMG

signals were recorded to file and then later used to train and

test the recognition engines. Our three subjects were not

given immediate feedback about how well their sub vocal

pronunciations were recognized, however there was still a

small amount of learning that took place as the subjects were

permitted to view their EMG signals after the experiments
and between trials. Nonetheless there were no indications

that pronunciation patterns changed significantly over time.

III. EXPERIMENTS AND RESULTS

A. Feature Generation

Four of the feature transforms had sufficient merit to

warrant further experimentation and were evaluated in depth

for generalization and learning performance. They were:
I. Discrete and Dual Tree Wavelets (Discrete at 5x5,

4x10, and 8x10 spectral matrix tessellations and
Dual it 5x10) which produced 92% word

recognition accuracy. The DWT was defined as:

f(t) = j_,k bj'k°gj'k (t)

Wj,k (t ) = 2J / 2w(2J t - k)

Where k is the translation and j the

dilation/compression parameter, m is the expansion
function. In our case these were Daubechies filters.

2. STFT tessellated to 5x10 or 50 features that

produced 91% word recognition accuracy. The



Fouriertransformdefinedas:
N-1

x(_ + l) = Yx(n + l) w_ n
n=0

-j(2FI/ N)
WII "= e

N = length(x)

3. Hartley Transform tessellated to 5x10 defined as:

real(FFTcoef) - imag( FFTcoef)

which showed 90% recognition accuracy

4. And Moving Averages at 200, I00, and 50 time

steps which produced 83% word recognition

accuracy.

Table 1: "Percentile of Correct Word Classification,"

presents the recognition engine's accuracy for each transform

in classifying unseen data. By unseen, we mean feature

vectors that were not used during neural network training. As

shown, the best performing pre transform was Kingsbury's

Dual Tree Complex Wavelet (DTCW) [8]. We used a quarter

sample shift orthogonal (Q-shift) filter having 10,10 taps

with a Near-symmetric-a filter having 5,7 taps.

Kingsbury's DTCW implementation of the Discrete

Wavelet Transform applies a dual tree of phase shifted filters

to produce real and imaginary components of complex

wavelet coefficients. One of its valuable properties for this

research is its improved shift invariance to the position of a

signal in the signal window. Other desirable features are

better directional selectivity for diagonal features, limited

redundancy independent of the number of scales, and efficient

order-N computation. In our experiments, the DTCW

increased shift invariance over the DWT by several percentage

points. Real time implementation of a CWT was not

practical from a computation and time perspective. However,

the dual tree wavelet achieves comparable generalization

performance to the CWT by doubling the sampling rate at

each level of a short support complex FIR filter tree. The

samples must be evenly spaced. In effect two parallel fully

decimated trees are constructed so that the filters in one tree

provides delays that are half a sample different from those in

the other tree. In the linear phase this requires odd length

filters in one tree and even length filters in the other. The

impulse response of the filters then looks like the real and

imaginary parts of a complex wavelet. This is how

Kingsbury uses them.
For our STFT's we used a standard implementation

having a Hann window and 50% time overlap to smooth the

signal window. Unequal windows based on variances were

also considered but did not add to overall performance.

However we could take advantage of the computation

efficiency of an STFT and still have fairly high recognition

performance though not as good as the DTWT. Baysian

regularization networks were tested but on initial results they
also did not increase the level of recognition..

Earlier EMG research [10] indicated there might be an

advantage in preprocessing wavelet packet features using

Principal Component Analysis (PCA). PCA was tested as a

preprocessing method for the DWT EMG signal vectors.

Even using fairly large numbers of PCA components,

generalization again proved poorer than without the

transform. Hence this step was omitted in our final

procedure. We attribute this possibly to high signal pattern

variation caused by phase shifting within the feature
windows.

During the experiments, it became apparent some signals

were not being well recognized by the neural net. In a real

time system with a capability to interactively request speaker
clarification, it is desirable to have a way to detect and

respond to such marginal signals. Individual word

recognition rates can help indicate which sub acoustic words

are more easily discriminated. For example, 'go' and 'omega'

consistently scored recognition rates of 90% or better. Tables

2 and 3 give the Confusion Matrices for the six words and
indicate which words were confused for one another. For

example, in Table 2, we see the word 'stop' correctly

classified 21 times, but mistakenly classified as the word

'right' 4 times. Overall the confusion rates were not high.



Transform

TABLE 1 PERCENTILE OF CORRECT WORD CLASSIFICATION

Average Individual Word Recognitions
Recognition
Rate

Dual Tree Wavelet

2 level, near symmetric filter; q shift b;

trained with 125 epochs
Fourier

Harm windows overlapped 50%
Trained with 200 epochs

Hartley
Harm windows overlapped 50%
Trained with 250 epochs

Moving Averages
Square windows overlapped 50%;
Trained with 125 epochs

92%

Stop Go Left Right Alpha Omega

84% 100% 91% 80% 97% 97%

91°/o 83% 100% 91% 89% 82% 98%

90% 79% 97% 91% 91% 79% 100%

835/0 62% 90% 84% 91% 73% 95%

TABLE 2: CONFUSION MATRLX FOR THE Dual. Tv,ze WAVELET TRa',_NSFORM

Dual Tree
Wavelet

Stop
Go
Left

Right

Alpha

Omega

Stop Go Left Right Alpha Omega
21 0 0 4 0 0

0 37 0 0 0 0

0 0 32 3 0 0

1 1 3 20 0 0

0 0 0 0 37 1

0 0 0 0 1 35

TABLE 3: CONFUSION NIAT-MX FOR Th_ FOURIER TRANSFOKM

Fourier

Stop Go Left Right Alpha Omega

Stop 24 2 0 0 0 3
Go 0 31 0 0 0 0

Left 0 0 29 2 1 0

Right 1 0 2 31 1 0

Alpha 1 0 0 4 27 1

Omega 0 1 0 0 0 39

Fig. 2 Real Time Display Environment

IV. RELATED WORK

Little work testing the ability of EMG by itself to perform

speech recognition appears to have been done. Parallel work

for speech recognition augmentation along the lines of that in
our set of experiments was performed by Chan [6]. He

proposed supplementing voiced speech with EMG in the

context of aircraft pilot communication. In their work they
studied the feasibility of supporting auditory speech

information with EMG signals recorded from primary' facial

muscles using sensors imbedded in a pilot oxygen mask.

Five surface signal sites were recorded during vocalized

pronunciation of the digits zero to nine using Ag-AgC1
button electrodes and an additional acoustic channel to

segment the signals. Their work demonstrated the potential

of using information from multi-source aggregated surface

measured EMG signals to enhance the performance of a

conventional speech recognition engine.

V. FUTURE DIRECTIONS

We are currently exploring a number of other enabling

technologies for enhanced EMG speech recognition and

conducting further experiments to increase general task

usability and vocabulary size. The technologies include the

capacitive non-contact sensors in wearable arrays and a real-
time system environment (figure 2). It is recognized that wet

AG/AG-C1 electrodes are problematic for many real world

tasks due to contact and surface resistance, hence dry

electrodes and new non-contact sensors are being tested as

well. For example, NASA Ames Research Center is working

with Quantum Applied Science and Research, Inc.

(QUASAR) to develop electric potential flee space sensors

that do not require resistive, or even good capacitive coupling

to the user. The sensor design provides a high input



impedance for the electrode that measures the free space

potential, while accommodating the input bias current of the

amplifier. At 10 Hz and above, the new sensor has

comparable sensitivity to conventional resistive contact

electrodes. In the off-body mode the sensor can make an

accurate measurement even through clothing. More detail

about this research is presented in [10].

New experiments are studying the feasibility of an

expanded vocabulary, ideally, one composed of the basic

speech components including vowels, consonants, and other

phonetic building blocks. Trying to detect these building

blocks poses an interesting problem, since many of the

auditory features that generate vocal speech such as

aspiration, glottal stops, or tonality may have no direct EMG

analog. However, the EMG signal is very rich, and this

richness may actually provide more useful cues for speech

recognition because they are so linked to the speech encoding

process cognitively. Initial experiments suggest that

extension to a larger 20-word control vocabulary is

reasonable. We will continue to grow the vocabulary with

sets of English phonemes usable by a full speech recognition

engine. If full speech recognition proves unfeasible, we can

still demonstrate useful specialized tasks with specialized

vocabularies such as machine control or cell phone dialing.

Currently we use a simulated real-time environment where

sub acoustic signals are recorded to files. These files are later

used as input to the feature generator and classifier. We are

implementing fast compact signal processing software to

enable real time processing now that is undergoing its first

tests on a digit based vocabulary.

VI. CONCLUSION

We have described a system that demonstrates the

potential of sub acoustic speech recognition based on EMG

signals. It is able to measure and easily classify six sub

acoustic words with up to 92% accuracy using only one pair

of surface electrodes. The enabling technologies were surface

sensors used to measure the EMG signals, signal processing

used to transform the signals into feature sets, and neural

networks to learn and provide sufficient robustness for the

nonlinear and non-stationary nature of the underlying signal

data.

The method has proven to be sufficient for applications

that require discrete word, subject specific, limited control

vocabularies. An open question is whether this system can

achieve full scale sub acoustic speech recognition and achieve

the goal of EEG based human thought interfaces using EMG

signals alone.

Significant challenges remain. We must generalize trained

feature sets to other users, show real time training and user

startup, optimize transformations and neural networks, reduce

sensitivity to noise and electrode locations, and handle

changes in physiological states of the users.
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